

INTERMEDIATE ALGEBRA LIAL HORNSBY

MCGINNIS

Chapter 4

Graphs, Linear Equations, and Functions

Copyright © 2010 Pearson Education, Inc. All rights reserved

Sec 4.1 - 2

Copyright © 2010 Pearson Education, Inc. All rights reserved

Sec 4.1 - 3

Objectives

- 1. Interpret a line graph.
- 2. Plot ordered pairs.
- 3. Find ordered pairs that satisfy a given equation.
- 4. Graph lines.
- 5. Find *x* and *y*-intercepts.
- 6. Recognize equations of horizontal and vertical lines and lines passing through the origin.
- 7. Use the midpoint formula.

Rectangular (or Cartesian, for Descartes) Coordinate System

Rectangular (or Cartesian, for Descartes) Coordinate System

Ordered Pair (x, y)	Quadrant	
A (5, <mark>3</mark>)	Quadrant I	
B (2, -1)	Quadrant IV	
C (-2, -3)	Quadrant III	
D (-4, 2)	Quadrant II	

Caution

CAUTION

The parentheses used to represent an ordered pair are also used to represent an open interval (introduced in **Section 3.1**). The context of the discussion tells whether ordered pairs or open intervals are being represented.

Completing Ordered Pairs

Complete each ordered pair for 3x + 4y = 7.

(a) (5, **?**)

(EXAMPLE 1)

We are given *x* = 5. We substitute into the equation to find *y*.

$$3x + 4y = 7$$

 $3(5) + 4y = 7$
 $15 + 4y = 7$
 $4y = -8$
 $y = -2$

The ordered pair is (5, -2).

Completing Ordered Pairs

Complete each ordered pair for 3x + 4y = 7.

(b) (?, -5)

EXAMPLE 1

Replace y with -5 in the equation to find x.

$$3x + 4y = 7$$

 $3x + 4(-5) = 7$ Let $y = -5$.
 $3x - 20 = 7$
 $3x = 27$
 $x = 9$

The ordered pair is (9, -5).

A Linear Equation in Two Variables

A linear equation in two variables can be written in the form

Ax + By = C,

where *A*, *B*, and *C* are real numbers (*A* and *B* not both 0). This form is called **standard form.**

Intercepts

Finding Intercepts

When graphing the equation of a line,

let y = 0 to find the *x*-intercept; let x = 0 to find the *y*-intercept.

Finding Intercepts

Find the *x*- and *y*-intercepts of 2x - y = 6, and graph the equation.

We find the x-interceptWe find the y-interceptby letting y = 0.by letting x = 0.2x - y = 62x - y = 62x - 0 = 6Let y = 0.2x = 6-y = 6x = 3x-intercept is (3, 0).y = -6y-intercept is (0, -6).

The intercepts are the two points (3,0) and (0, -6).

EXAMPLE 2

Finding Intercepts

Find the *x*- and *y*-intercepts of 2x - y = 6, and graph the equation.

The intercepts are the two points (3,0) and (0, -6). We show these ordered pairs in the table next to the figure below and use these points to draw the graph.

EXAMPLE 2

Graphing a Horizontal Line

Graph y = -3.

(EXAMPLE 3)

Since *y* is always –3, there is no value of *x* corresponding to y = 0, so the graph has no *x*-intercept. The *y*-intercept is (0, –3). The graph in the figure below, shown with a table of ordered pairs, is a horizontal line.

EXAMPLE 3 con't Graphing a Vertical Line

Graph *x* + 2 = 5.

The *x*-intercept is (3, 0). The standard form 1x + 0y = 3 shows that every value of *y* leads to x = 3, so no value of *y* makes x = 0. The only way a straight line can have no *y*-intercept is if it is vertical, as in the figure below.

Copyright © 2010 Pearson Education, Inc. All rights reserved.

Horizontal and Vertical Lines

CAUTION

To avoid confusing equations of horizontal and vertical lines remember that

- **1.** An equation with only the variable *x* will always intersect the *x*-axis and thus will be *vertical*.
- **2.** An equation with only the variable *y* will always intersect the *y*-axis and thus will be *horizontal*.

Graphing a Line That Passes through the Origin

Graph 3x + y = 0.

EXAMPLE 4

We find the	he x-intercept	We find the <i>y</i> -intercept	
by letting	<i>y</i> = 0.	by letting $x = 0$.	
3x + y = 0		3x + y = 0	
3x + 0 = 0	Let <i>y</i> = 0.	3(0) + y = 0	Let <i>x</i> = 0.
3x = 0		0 + y = 0	
<i>x</i> = 0	x-intercept is (0, 0).	<i>y</i> = 0	y-intercept is (0, 0).

Both intercepts are the same ordered pair, (0, 0). (This means the graph goes through the origin.)

Graphing a Line That Passes through the Origin

Graph 3x + y = 0.

(EXAMPLE 4)

To find another point to graph the line, choose any nonzero number for x, say x = 2, and solve for y.

Let
$$x = 2$$
.
 $3x + y = 0$
 $3(2) + y = 0$
 $6 + y = 0$
 $y = -6$
Let $x = 2$.

This gives the ordered pair (2, -6).

Graphing a Line That Passes through the Origin

Graph 3x + y = 0.

(EXAMPLE 4)

These points, (0, 0) and (2, -6), lead to the graph shown below. As a check, verify that (1, -3) also lies on the line.

Use the midpoint formula

If the endpoints of a line segment PQ are (x_1, y_1) and (x_2, y_2) , its midpoint *M* is

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

4.1 The Rectangular Coordinate System EXAMPLE 5 Finding the Coordinates of a Midpoint

Find the coordinates of the midpoint of line segment PQ with endpoints P(6, -1) and Q(4, -2).

Use the midpoint formula with $x_1 = 6$, $x_2 = 4$, $y_1 = -1$, $y_2 = -2$:

$$\left(\frac{6+4}{2}, \frac{-1+(-2)}{2}\right) = \left(\frac{10}{2}, \frac{-3}{2}\right) = \left(5, \frac{-3}{2}\right)$$

Midpoint