Objectives

To use the properties of exponents to:
 Simplify exponential expressions.
 Solve exponential equations.
 To sketch graphs of exponential functions.

- A polynomial function has the basic form: $f(x) = x^3$
- An exponential function has the basic form: $f(x) = 3^x$
- An exponential function has the variable in the <u>exponent</u>, <u>not</u> in the <u>base</u>.
- General Form of an Exponential Function: $f(x) = N^x, N > 0$

Properties of Exponents

 $A^X \cdot A^Y = A^{X+Y}$

 $\left(A^X\right)^Y = A^{XY}$

 $(AB)^X = A^X B^X$

 $\left(\frac{A}{B}\right)^{X} = \frac{A^{X}}{B^{X}}$

 $\frac{A^{A}}{A^{Y}} = A^{X-Y}$ $A^{-X} = \frac{1}{A^X}$

 $\frac{1}{A^{-X}} = A^X$

 $A^{X/Y} = \sqrt[Y]{A^X} = \left(\sqrt[Y]{A}\right)^X$

Properties of Exponents Simplify: $2^2 \cdot 2^3 = 2^5 = 32$

$$2^2 \cdot 2^{-6} = 2^{-4} = \frac{1}{2^4} = \frac{1}{16}$$

$$(2^3)^2 = 2^6 = 64$$

Properties of Exponents Simplify: $\left(\frac{2}{3}\right)^{-3} = \frac{2^{-3}}{3^{-3}} = \frac{3^3}{2^3} = \frac{27}{8}$

$$\frac{3^7}{3^9} = 3^{-2} = \frac{1}{3^2} = \frac{1}{9}$$

$$(2^{\frac{1}{2}})(8^{\frac{1}{2}}) = (2 \cdot 8)^{\frac{1}{2}} = 16^{\frac{1}{2}} = \sqrt{16} = 4$$

Exponential Equations Solve: $5^{x} = 125$ $5^{x} = 5^{3}$ x = 3Solve: $7^{(x-1)} = 7^{-\frac{1}{2}}$ $x - 1 = -\frac{1}{2}$ $x = \frac{1}{2}$

Exponential Equations Solve: $8^x = 4$ **Solve:** $8^x = 2$ $(2^3)^x = 2^1$ $(2^3)^x = 2^2$ $2^{3x} = 2^1$ $2^{3x} = 2^2$ 3x = 23x = 1 $x = \frac{2}{3}$ $x = \frac{1}{3}$

Exponential Equations
Solve:
$$(\frac{1}{3})^x = 27$$
 Solve: $x^{\frac{1}{3}} = 27$
 $(3^{-1})^x = 27$ $(x^{\frac{1}{3}})^3 = 27^3$
 $3^{-x} = 3^3$ $x = 19,683$
 $-x = 3$
 $x = -3$

Exponential Equations

Solve:

Not considered an exponential equation, because the variable is in the base.

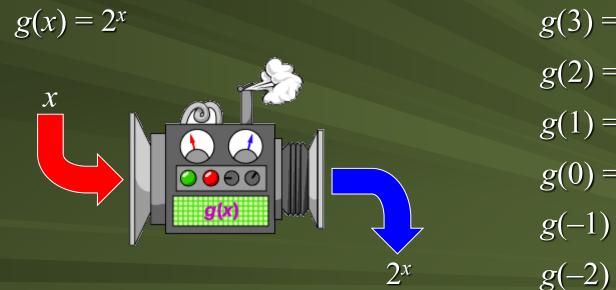
 $x^{\frac{3}{4}} = 8$ $\left(x^{\frac{3}{4}}\right)^{\frac{4}{3}} = 8^{\frac{4}{3}}$

 $x = \left(\sqrt[3]{8}\right)^4$

x = 16

 $x = (2)^4$

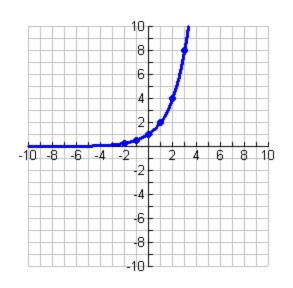
General Form of an Exponential Function: $f(x) = N^x$, N > 0



g(3) = 8 g(2) = 4 g(1) = 2 g(0) = 1 $g(-1) = 2^{-1} = \frac{1}{2}$ $g(-2) = 2^{-2} = \frac{1}{2^{2}} = \frac{1}{4}$

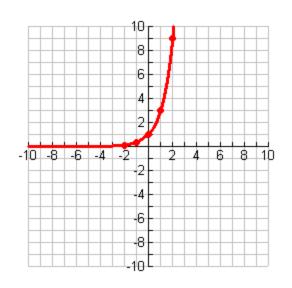
$g(x)=2^x$		
x	g(x)	
2	4	
1	2	
0	1	
-1	$\frac{1}{2}$	
-2	$\frac{1}{4}$	

 $g(x) = 2^x$

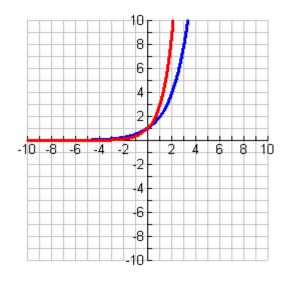


$h(x)=3^x$		
x	h(x)	
2	9	
1	3	
0	1	
-1	$\frac{1}{3}$	
-2	$\frac{1}{9}$	

 $h(x) = 3^x$



 $g(x) = 2^x$ (blue)



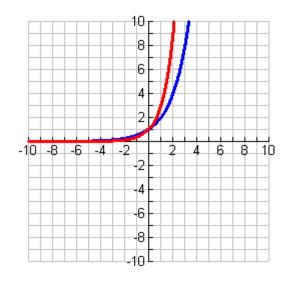
 $h(x) = 3^x \text{ (red)}$

 Exponential functions with positive bases <u>greater</u> than 1 have graphs that are <u>increasing</u>.

The function never crosses the x-axis because there is nothing we can plug in for x that will yield a zero answer.

The x-axis is a left horizontal asymptote.

 $\overline{g(x)} = 2^x$ (blue)



 $h(x) = 3^x \text{ (red)}$

A <u>smaller</u> base means the graph rises more <u>gradually</u>.

A <u>larger</u> base means the graph rises more <u>quickly</u>.

Exponential functions will <u>not</u> have <u>negative</u> bases.

The Number e

A base often associated with exponential functions is:

$e \approx 2.71828169$

The Number e

Compute:

 $\lim_{x \to 0} (1+x)^{\frac{1}{x}} \approx 2.71828169$

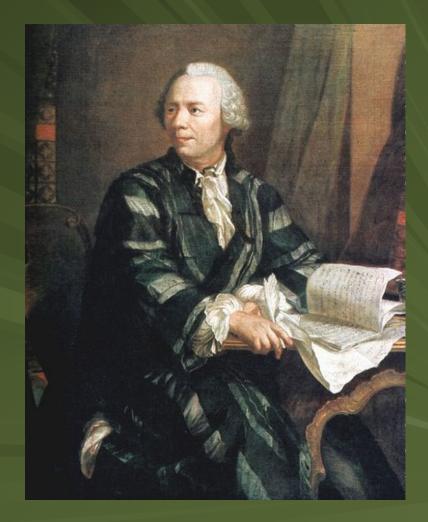
 $\lim_{x \to 0^{-}} (1+x)^{\frac{1}{x}}$

				1/
lim	(1)			$\int x$
	$\left(1 \right)$	+	X	
$\lim_{x \to 0^+}$	`		/	

<i>x</i>	$(1+x)^{\frac{1}{x}}$	<u>x</u>	$(1+x)^{\frac{1}{2}x}$
1	2.868	.1	2.5937
01	2.732	.01	2.7048
001	2.7196	.001	2.7169

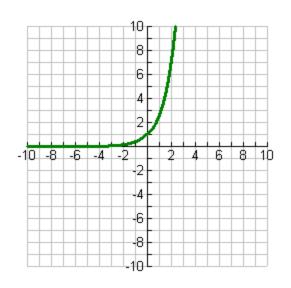
The Number e

 Euler's number
 Leonhard Euler (pronounced "oiler")
 Swiss mathematician and physicist



The Exponential Function

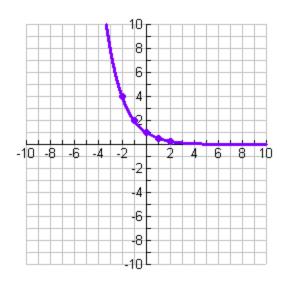
 $f(x) = e^{x}$



Exponential Functions $j(x) = (\frac{1}{2})^x$

x	j(x)
2	$\frac{1}{4}$
1	$\frac{1}{2}$
0	1
-1	2
-2	4

Exponential Functions $j(x) = (\frac{1}{2})^x$



Exponential functions with positive bases less than 1 have graphs that are <u>decreasing</u>.

Why study exponential functions?

Exponential functions are used in our real world to measure growth, interest, and decay.

Growth obeys exponential functions.

Ex: rumors, human population, bacteria, computer technology, nuclear chain reactions, compound interest

Decay obeys exponential functions.
 Ex: Carbon-14 dating, half-life, Newton's Law of Cooling